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We present simple modifications of standard monotonicity-preserving limiters
that provide either sign preservation or alternative bounding values for the resulting
numerical schemes (e.g., that the solution remain between zero and one rather than
preserving monotonicity). These limiters can be easily implemented in Godunov-type
methods by modifying the reconstruction step of the algorithm. These modifications
allow methods to achieve greater formal accuracy, for example by improving the
first-order accuracy in theL∞ norm. The greatest advantage of our approach is its
natural extension to more than one spatial dimension, and to systems of equations
without operator splitting.
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1. INTRODUCTION

Modern high-resolution Godunov schemes have proven to be effective techniques for
solving a variety of fluid dynamic problems. Key elements in these methods are the nonlin-
ear limiter functions that preserve monotonicity in the solution while allowing high-order
accuracy in smooth flows. We note that linear monotone schemes are intrinsically first-order
accurate [11, 20]. The lesser constraint of preserving monotonicity is essential for many
problems, but may lead to excess numerical diffusion that will generally reduce accuracy. In
one dimension the concept of monotonicity preservation and Total Variation Diminishing
(TVD) are closely related, but TVD concepts do not extend to more than one dimension or to

1 This work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory
under Contract W-7405-ENG-36.
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systems [11]. Throughout this paper we consider modifications to monotonicity-preserving
schemes, and use a Godunov type of formalism [22, 23].

In this paper, we describe several simple modifications of standard limiters that relax
the constraint of preserving monotonicity while enforcing weaker constraints. Our mod-
ified limiter functions improve the overall accuracy of simulations, and in particular can
be tailored to better preserve the values of local maxima and minima. Further, these mod-
ifications are easily introduced into existing high-resolution multidimensional Godunov
implementations.2

Earlier work in computational geophysics has demonstrated the effectiveness of sign-
preserving methods (positive definite methods). Smolarkiewicz and co-workers introduced
the MPDATA scheme, which preserves sign through the direct application of upwinding in
a multistep procedure (see [l8, 13] and references therein). Bott introduced an alternative
method that can be used to preserve the positive definiteness of the solution [3] (further
discussion of this paper is contained in [17, 4]). Linet al. describe one-dimensional limiters
for computing sign-preserving or bounds-preserving solutions in geophysical applications
[12] using a one-dimensional Godunov framework. These methods are discussed in a recent
book by Durran [9], which also contains a brief discussion of how to implement both
sign-preserving and bounds-preserving flux limiters. Our work differs in two important
respects: the limiters naturally extend to a multidimensional form, and through a Goduov-
type approach the method extends to hyperbolic systems of equations.

High-resolution Godunov schemes are based on three separate steps. First there is the
reconstruction of a continuous solution of the dependent variable within a computational
cell, based on the discrete values of the variable in the cell and its immediate neighborhood.
This reconstruction necessarily leads to discontinuities at the cell interfaces. In the second
step, these discontinuities are resolved via a Riemann solution between each of the adjacent
cells to produce a single-valued solution at the interface and the associated flux. For a
“first-order,” classical Godunov method, this solution procedure is equivalent to simple
upwinding (i.e., donor cell). However in high-resolution methods an intermediate step is
required to construct the new cell values by temporally averaging the solution used in
the Riemann problem. These fluxes produce new cell values that are the updated discrete
solution, completing one time step.

Here we are only concerned with the first step, the reconstruction of the continuous
solution. In the standard framework, we consider piecewise linear interpolation, where the
local gradient within a cell is constructed from data in the immediate neighborhood of the
cell and then modified by further multiplication with a scalar limiter function. The standard
limiters that perserve monotonicity (equivalent to TVD in one dimension, but TVD does
not extend to multiple dimensions) are nicely presented in [19, 11]. In this paper, we present
new forms for the limiter function that are less restrictive. We demonstrate the performance
of these limiters on idealized test problems in one and two dimensions and compare the
results with those of the standard limiter.

An outline of this paper is as follows. In the next section, we briefly review the theory of
the monotonicity preserving limiter. In Section 3 we describe a simple predictor–corrector

2 The methods are nominally second order or higher, via linear or higher interpolation, but the termhigh resolution
is used instead ofhigh orderbecause only first-order formal accuracy is achieved for discontinuous solutions. This
means methods that have high accuracy in smooth flow are nonoscillatory and resolve discontinuities better than
low-order methods.
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algorithm to simulate linear advection. The algorithm uses linear interpolation in the predic-
tor step, providing the framework to compare the standard monotonicity-preserving limiter
with our new formulations. In Section 4, we present our modified limiter functions and
apply them to a variety of one-dimensional test problems. We compare their performance
to that of the monotonicity-preserving limiter on two idealized test problems: a Gaussian
pulse exemplifying a smooth function and a square wave that represents a discontinuous
function. We also show the impact of the new limiters on a higher order reconstruction
by modifying a parabolic reconstruction. Last, we show two examples of using the sign-
preserving limiter to simulate flows governed by the Euler equations of gas dynamics. In
Section 5 we demonstrate the use of the new limiter functions in two spatial dimensions.
We summarize our results in Section 6.

2. MONOTONICITY-PRESERVING LIMITERS

In the first phase of a high-resolution Godunov method, we reconstruct the continuous
field within a cellÄi, j from the discrete set of cell-averaged values. For example, we
might reconstruct the continuous field,ρ, within the cell from the discrete field ¯ρ i, j =∫
Äi, j
ρ(x) dÄ. Here the indicesi, j indicate the cell center in a two-dimensional mesh and

x is the coordinate vector.
For the reconstruction, we employ an interpolating function that is piecewise linear,

ρ(x) = ρ̄ i, j +∇ρi, j · (x− x̄i, j ), x∈Äi, j . (1)

To enforce the monotonicity of the continuous field, we augment the interpolation with
a scalar limiter function,φ, that multiplies the gradient,∇ρi, j . This general approach to
constructing a method and its limiter follows from Barth [1, 2] and has been applied to a
variety of applications [7, 14]. In this paper, we only consider logically rectangular grids,
although the methods should extend to more general grids. This approach also can be
applied to the systematic construction of higher order expansions (an example is provided
in Section 4).

The reconstructed field, now denoted ˆρ to emphasize its dependence on the limiter func-
tion, is given by

ρ̂(x) = ρ̄ i, j + φi, j∇ρi, j · (x− x̄i, j ), x∈Äi, j . (2)

The scalar limiter function can be defined as

φi, j = min

(
1,

1ρ̄max
i, j

1maxρi, j
,
1ρ̄min

i, j

1minρi, j

)
(3)

(see [8]). Here1ρ̄max
i, j = ρ̄max

i, j − ρ̄ i, j , where ¯ρmax
i, j is the maximum of the local data usually

taken in a neighborhood of all the cells adjacent toÄi, j . Also1maxρi, j is the maximum value
of the reconstructed values within the cellwithout limitingminus the cell-average value (i.e.,
max(ρi, j )− ρ̄ i, j ; this value will occur at a cell edge for a linear reconstruction). The terms
1ρ̄min

i, j and1minρi, j are defined analogously. This definition of the limiter provides the
reconstruction with the property of local boundedness.3 The modifications to the limiter

3 ρ̄n+1
i, j ∈ [ρ̄min

i, j , ρ̄
max
i, j ]x∈Äi, j .
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that we describe in this paper can be implemented via simply redefining ¯ρmax
i, j andρ̄min

i, j . In
particular we relax the constraints on these quantities; in this sense our new limiters are less
restrictive and allow higher order accuracy to be achieved.

In one dimension, we can explicitly display the limiter function (3) in terms of an un-
specified gradient. The limited piecewise linear interpolant is

ρ̂ j (x) = ρ̄ j + φ j
∂ρ

∂xj
(x − x̄ j ).

Then the edge values in a cell are given by

ρ̂ j
(
xj± 1

2

) = ρ̄ j + φ j
∂ρ

∂xj

(
xj± 1

2
− x̄ j

)
.

The quantities required by the limiter function are easily computed:

ρ̄max
j = max(ρ̄ j−1, ρ̄ j , ρ̄ j+1), (4)

ρ̄min
j = min(ρ̄ j−1, ρ̄ j , ρ̄ j+1), (5)

1maxρ j = max
(
ρ j
(
xj− 1

2

)
, ρ j
(
xj+ 1

2

))− ρ̄ j ,

and

1minρ j = ρ̄ j −min
(
ρ j
(
xj− 1

2

)
, ρ j
(
xj+ 1

2

))
.

Now consider the case where the mesh has constant spacing1x and where the solution
increases to the right. Then ¯ρmax

j = ρ̄ j+1 and ρ̄min
j = ρ̄ j−1, 1maxρ j = 1

21x∂ρ/∂xj , and
1minρ j = 1

21x∂ρ/∂xj . Thus we can explicitly write the limiter function in terms of the
(as yet unspecified) gradient

φ j = min

(
1,

2(ρ̄ j+1− ρ̄ j )

1x∂ρ/∂xj
,

2(ρ̄ j − ρ̄ j−1)

1x∂ρ/∂xj

)
. (6)

3. LIMITED FROMM SCHEME

To illustrate the use of the standard limiter and the new modifications that we describe,
we consider the simple example of advection of a scalar fieldρ by a constant velocitya = 1
in one space dimension,

∂ρ

∂t
+ a

∂ρ

∂x
= 0. (7)

We employ a numerical algorithm based on forward-time integration. For the basic
scheme with limiting, we first define upwind values evaluated at half-time levels using

ρ̂
n+ 1

2

j+ 1
2
= ρ̂n

j+ 1
2
− 1t

2
aφ j

∂ρ

∂xj
, (8)

or, equivalently,

ρ̂
n+ 1

2

j+ 1
2
= ρ̂n

j+ 1
2
− 1t

21x
a
(
ρ̂n

j+ 1
2 ,−
− ρ̂n

j− 1
2 ,+
)
,



MODIFYING MONOTONICITY-PRESERVING LIMITERS 477

TABLE I

The Accuracy of Unlimited Fromm Scheme on a Gaussian Pulse

Advected with the Scalar Wave Equation

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 2.3× 10−2 2.39 4.4× 10−3 2.29 9.1× 10−4

L2 3.0× 10−2 2.32 6.0× 10−3 2.29 1.2× 10−3

L∞ 6.5× 10−2 2.29 1.3× 10−2 2.32 2.7× 10−3

Note.A CFL number of 0.3 is used with periodic boundary conditions for a single
transit of the grid. Results shown att = 1.0.

where the cell-edge valuesρn
j+ 1

2
are reconstructed from the cell-centered data via (2) and

evaluated using the cellj reconstructions. The new time values are then calculated as

ρ̄n+1
j = ρ̄n

j −
a1t

1x

(
ρ̂

n+ 1
2

j+ 1
2
− ρ̂n+ 1

2

j− 1
2

)
. (9)

To actualize the algorithm, we must specify the form of the gradient, which is used
directly in (8) and also indirectly in reconstructing the cell-edge values. The gradient is
also used in the limiter function, if employed. For example, if we were to use piece-
wise linear interpolation for the cell-edge value ˆρn

j+ 1
2
, and if the gradients were calculated

at the cell edges, then a predictor–corrector Lax–Wendroff method would result. However
throughout this paper we use a cell-centered gradient (Fromm’s scheme) [21]; for constant
mesh spacing, this gradient has the form

∂ρ

∂xj
≈ ρ̄n

j+1− ρ̄n
j−1

21x
+O(1x3). (10)

We use two standardized problems—advection of a Gaussian pulse and of a square
wave—to do basic testing of our methods. Our smooth problem is the transport of the
Gaussian pulseρ = exp[−30(x − 1

2)
2] on the intervalx ∈ [0, 1] which allows us to evalu-

ate the ability of a scheme (and in particular a limiter function) to preserve the amplitudes of
local maxima. The square wave allows us to evaluate the effects of relaxing monotonicity-
preserving constraints at discontinuities. We also run the Gaussian pulse at several resolu-
tions to estimate the rate of convergence. We run all the one-dimensional problems with a
CFL number of 0.3, and with periodic boundary conditions using 20 cells. The Gaussian

TABLE II

The Accuracy of Basic Monotonicity-Preserving Limiter on a Gaussian

Pulse Advected with the Scalar Wave Equation

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 3.1× 10−2 2.02 6.9× 10−3 2.18 1.7× 10−3

L2 4.7× 10−2 1.89 1.2× 10−2 1.95 3.3× 10−3

L∞ 1.2× 10−1 1.53 4.4× 10−2 1.42 1.5× 10−2

Note.A CFL number of 0.3 is used with periodic boundary conditions for a single
transit of the grid. Results shown att = 1.0.
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FIG. 1. The performance of the basic monotone limiter on several simple tests. Both use 20 cells and a CFL
number of 0.3 with periodic boundary conditions for a single transit of the grid. Results shown att = 1.0. (Left)
A Gaussian exp(−30(x − 1

2
)2). (Right) Square wave.

pulse problems are repeated with 40 and 80 cells. The final time step of the calculation is
modified to be small enough so that the solution is output at a time exactly equal to 1.0. In
Table I we show how this method performs without any limiter to provide a baseline for
the best performance one can reasonably expect in terms of accuracy. These norms are de-
fined as follows: the error per cell isEj = Vj (Uexact, j −U j ), whereVj is the volume of the
cell (we useVj =1x in one dimension),L1=

∑
j |Ej |, L2=

√∑
j E2

j , andL∞= maxj E j .
As a basis for later comparison with our modified limiters, we show the performance of

the basic limiter (6) applied with our scheme (8), (9), and (10) on our two chosen problems.
The accuracy of the method for advecting a Gaussian pulse for three different norms is
recorded in Table II. The method is second-order accurate inL1, is weakly second order in
L2, but is less than second order inL∞. We show that the degradation of the peak amplitude
can be reduced with our modified limiters. The solution for the square wave is monotone
and the wave remains fairly symmetric. A graphical depiction of performance is shown
in Fig. 1, where the computed solution using the basic limiter is compared to the analytic
solution.

4. MODIFIED LIMITER FUNCTIONS

4.1. Sign-Preserving Limiter

Our first modification represents a relaxation of the standard limiter that produces a sign-
preserving scheme. We dispense with the use of ¯ρmax

i, j in the limiter and set ¯ρmin
i, j to a global

value of zero. The limiter is now

φ = min

(
1,
1ρ̄min

1minρ

)
, (11)

which will produce results that do not fall below zero.
Let us examine the performance of this modification on our two standard problems. As

shown in Table III, the accuracy of the scheme is improved significantly over the stan-
dard monotonicity-preserving result. The solution is now strongly second-order accurate in
all three norms examined. Figure 2 shows that a new maxima is produced in the square
wave, but the width of the steep transitions associated with the square wave remains almost
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TABLE III

The Accuracy of Our Sign-Preserving Limiter on a Gaussian Pulse

Advected with the Scalar Wave Equation

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 2.2× 10−2 2.29 4.4× 10−3 2.32 9.1× 10−4

L2 3.0× 10−2 2.36 6.0× 10−3 2.31 1.2× 10−3

L∞ 6.6× 10−2 2.33 1.3× 10−2 2.30 2.7× 10−3

identical to earlier results. Furthermore the symmetry of the square wave has improved,
reproducing the general phase error properties of Fromm’s scheme.

4.2. Global Minimum/Maximum Limiter

Consider a small variation of the problem of advecting the square wave, in which one
adds a constant background to the field. Application of the sign-preserving limiter to this
problem would show undershoots developing at the leading and trailing edges of the wave.
Of course these undershoots were precluded in the absence of the background.

This leads us to consider a generalization of the sign-preserving limiter, in which one
enforces an arbitrary arbitrarily chosen value of the global minimum, not necessarily zero.
We note a similar strategy has been developed to apply a sign-preserving advection scheme
to the momentum equation by [18]. This technique can be equally well applied to enforce
an arbitrary global maximum as well. Finally, the global minimum and global maximum
can be enforced simultaneously. An example of a situation in which this limiter would be
useful is the advection of a species fraction, which is bounded physically between zero
and one.

To implement this global minimum/maximum limiter, we set the values of ¯ρmax
i, j andρ̄min

i, j

globally. We have applied this limiter to our test problems, choosing the global values of of
ρ̄max

i, j = 1 and ¯ρmin
i, j = 0.

Table IV shows that the accuracy of the solution is nearly identical to the sign-preserving
limiter. That is, the solution is second-order accurate in all norms. The results reproduce the
monotone results associated with the basic limiter shown in Fig. 3; in particular the spurious
new maximum of the square wave generated by the sign-preserving limiter is gone. This

FIG. 2. The results using the sign-preserving limiter for a Gaussian pulse (left) and a square wave (right).
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TABLE IV

The Accuracy of Our Bounds-Preserving Limiter on a Gaussian Pulse

Advected with the Scalar Wave Equation

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 2.2× 10−2 2.29 4.5× 10−3 2.32 9.1× 10−4

L2 3.0× 10−2 2.36 6.0× 10−3 2.31 1.2× 10−3

L∞ 6.6× 10−2 2.32 1.3× 10−2 2.31 2.6× 10−3

scheme gives high accuracy for smooth flow without compromising the physical nature of
the solution.

4.3. Higher-Order Reconstructions

To demonstrate the performance of our modifications in algorithms different from those
discussed previously, we turn to discontinuous Galerkin methods [5, 6]. Below we show
the impact of the sign-preserving limiter on results found with a parabolic basis (DG(2)
for a second-order Legendre polynomial) integrated with a third-order TVD Runge–Kutta
method [16]. Overall we expect third-order accuracy from the method. As we see, the
accuracy is far greater than from the limited Fromm scheme given before. In this case,
the limiter is computed as before and applied to all terms in the reconstruction except the
constant (the cell-average value).

First, we show results for the scheme using the standard limiter on our two chosen prob-
lems. Everything is the same as earlier, except the CFL number is now 0.1 to conservatively
satisfy the more restrictive stability condition of this method (CFL= 0.2). Table V shows
that the method with the standard limiter has errors of the same magnitude as the Fromm
scheme with our modified limiter. This is indicative of the high accuracy from the unlimited
scheme. In Fig. 4 we show the polynomial reconstructions defined by the evolving basis
with the dashed line. These are most effectively displayed in this form.

Now we show the results of RK3–DG(2) with the sign-preserving limiter. Table VI
documents both the high intrinsic accuracy of this method and the great improvement in
accuracy achievable using the sign-preserving limiter. This improvement is also evident in
the plots of the solution for these two problems shown in Fig. 5.

FIG. 3. The results using the bounded limiter on a Gaussian pulse (left) and a Square wave (right).
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TABLE V

The Accuracy of the Standard Limiter on a Gaussian Pulse Advected

with the Scalar Wave Equation Using the RK3–DG(2) Method

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 7.9× 10−3 2.66 1.3× 10−3 2.68 1.2× 10−4

L2 1.5× 10−2 2.16 3.4× 10−3 2.16 7.6× 10−4

L∞ 4.2× 10−2 1.73 1.3× 10−2 1.79 3.6× 10−3

Note.The dashed line displays the piecewise parabolic polynomial reconstruction evolved
with the flow.

TABLE VI

The Accuracy of the Sign-Preserving Limiter on a Gaussian Pulse Advected

with the Scalar Wave Equation Using the RK3–DG(2) Method

Norm Error 20 Rate 20–40 Error 40 Rate 40–80 Error 80

L1 2.0× 10−4 3.27 2.1× 10−5 3.27 3.0× 10−6

L2 2.7× 10−4 3.31 2.7× 10−5 3.31 4.3× 10−6

L∞ 6.4× 10−4 3.29 6.5× 10−5 2.00 1.6× 10−6

FIG. 4. The RK3–DG(2) results using the standard limiter on a Gaussian pulse (left) and Square wave (right).

FIG. 5. The RK3–DG(2) results using the sign-preserving limiter on a Gaussian pulse (left) and a square
wave (right).
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FIG. 6. Results obtained using the sign-preserving limiter on the Euler equations of gas dynamics for two
blast wave problems. In the Sedov problem 120 cells are used and 400 cells are used in the blast wave problem.
Both problems are run at a maximum CFL number of 0.8. (Left) The Taylor–Sedov blast wave. (Right) Interacting
blast waves.

4.4. Euler Equations of Gas Dynamics

As a final example in one dimension, we apply one of our modified limiters to a system of
equations. This example is intended to illustrate the robustness of the modification and its
extensibility to systems of equations. We test the method on simulating the Euler equations
of gas dynamics by modifying the limiters used in the scheme described by Rider [15] to
be sign-preserving rather than monotonicity preserving. All other features of the method
described in [15] are unchanged.4

The solution is shown in Fig. 6 for the Taylor–Sedov blast wave [10] and the interacting
blast wave problem [24]. In both cases, the modified limiter retains peak values better while
allowing small oscillations in the interacting blast wave problems. In this figure, the dashed
line displays the solution computed with the standard monotonicity-preserving limiter. In
the Sedov problem, the modified limiter changes the peak value in density from 3.26 to
3.52 (the correct value is 4). For the interacting blast waves the right peak increases in value
from 5.64 to 6.12, and the left peak overshoots its converged value, but converges under
mesh refinement (the converged value is≈6.5). More important, the scheme is a simple
modification of the base method and is quite robust despite the complex nature and severity
of the shocks in these problems.

5. IMPLEMENTATION IN TWO DIMENSIONS

We can easily extend each of the modifications of the previous section to multiple di-
mensions. In general terms, we expand the neighborhood for the calculation of ¯ρmax

i, j and
ρ̄min

i, j to include all the data within the support of∇ρ. For our tests in two dimensions, we
use a Hancock scheme for the multidimensional time integration [20], and a nine-cell basis
for ∇ρ. For example, thex-component of the gradient is written

∂ρ

∂x
≈ ρ̄ i+1, j−1+4ρ̄ i+1, j + ρ̄ i+1, j+1− ρ̄ i−1, j−1−4ρ̄ i−1, j − ρ̄ i−1, j+1

121x
+O(1x3,1x1y2).

(12)

4 The scheme described there uses Hancock’s method, a monotonicity-preserving van Leer differencing coupled
with an adaptive two-shock Riemann solver.
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Thus the reconstruction and the limiter function will depend on the data ¯ρ i±1, j±1 and the
construction of our modified limiters will involve only analogous changes to the definitions
of the maximum and minimum values.

In this section, we apply each of our modified limiters to three separate tests. First there
is a Gaussian “hill” rotated around the unit square, which we use to test the ability of the
various limiters to preserve the amplitude of peaks. Second, there is a sine wave advected
at an angle across a periodic domain, which we run at three resolutions to test convergence
rate. Third, there is a “slotted cylinder” rotated around the unit square, which we use to test
the effects of the limiters on steep (initially discontinuous) pulses.

Our first two-dimensional test is the Gaussian hillρ = exp[
√
(x − 0.5)2+ (y− 0.75)2/

0.15], rotated once around the unit domain using a CFL number of 0.5. The CFL number is
computed at the minimum value of1x/(|vx| + |vy|). The rotational velocity field is defined
byvx = −2(y− 1

2) andvy = 2(x − 1
2). The domain is covered with 100× 100 cells. After

one revolution, the base method with the standard monotonicity-preserving limiter (3) pro-
duces a peak value of 0.824, a loss of nearly 14% from the initial value of 0.950. As before,
the sign-preserving and bounded limiters give the same results, both reducing the loss of am-
plitude to less than 10%, producing a peak value of 0.858. These results are plotted in Fig. 7.

To quantify solution order and convergence rate, we advect a two-dimensional sine wave
ρ(x, y) = sin(πx) sin(πy) on a square periodic grid of unit length; the advective velocity
makes an angle of 45◦ to the mesh lines. We measure the error after one full period. For a
CFL number of 0.5, Fromm’s scheme has (theoretically) a third-order rate of convergence.
In Table VII the order of accuracy is shown for three of the limiter functions. For the
monotonicity-preserving limiter, the convergence rate is essentially third order inL1, but
significantly decreases inL2 and falls below second order inL∞. The sign- or bounds-
preserving limiters give third-order accuracy in bothL1 andL2, and higher than second-
order accuracy inL∞. Note also that the overall error of the sign- or bounds-preserving
schemes inL1 is only slightly better than that of the monotonicity-preserving scheme;
however inL2 the advantage is about a factor of five, while inL∞, the advantage is nearly
a factor of 40.

We repeat these calculations at a small Courant number, 0.05. A small Courant number
is difficult for two reasons: the larger number of time steps that allow discrete errors to
accumulate and that upwind methods perform quite well at large Courant numbers (often
being exact at a Courant number of one; i.e., they are characteristic). These results are
summarized in Table VIII. The new limiters still have an advantage, but their effectiveness
is reduced somewhat. TheL1, L2, andL∞ errors are reduced over the base scheme.

Lastly, we show two-dimensional results for a discontinuous solution. We rotate the
slotted cylinder [25] once around the unit domain using a CFL number of 0.5. The initial peak
value is 1.000. As shown in Fig. 8, the peak value of the monotonicity-preserving scheme
is somewhat eroded at 0.968; for the sign-preserving limiter the peak is 1.136, and the
bounded limiter yields the best result, maintaining a peak value of 0.9996 without producing
unphysical overshoots. The sign-preserving limiter produces fairly large overshoots, but
does reduce the erosion of the “bridge” between the two sides of the cylinder.

When the CFL number is reduced to 0.05 the relative advantage of the new limiters
is reduced, but still clear. The base scheme gives a peak value of 0.946 while the sign-
preserving limiter allows overshoots to 1.118. The bounded limiter retains the maximum
value at 0.999. The two new limiters reduce theL1 error by 5 and 2.5%, respectively. They
also decrease to overall size of other errors by relatively small amounts.
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TABLE VII

The Accuracy of the Limiters for a Periodic Sine Wave Translated at 45 Degrees

for One Period in Two Dimensions with a CFL Number of 1/2

Norm Error 50× 50 Rate 100× 100 Rate 200× 200

L1,mono 1.3× 10−3 2.88 1.8× 10−4 2.98 2.3× 10−5

L2,mono 2.2× 10−3 2.37 4.3× 10−4 2.38 8.2× 10−5

L∞,mono 1.8× 10−2 1.65 5.8× 10−3 1.54 2.0× 10−3

L1,sign 9.8× 10−4 2.99 1.2× 10−4 3.00 1.5× 10−5

L2,sign 1.1× 10−3 2.99 1.4× 10−4 3.00 1.7× 10−5

L∞,sign 1.6× 10−3 2.61 2.7× 10−4 2.30 5.4× 10−5

L1,bound 9.8× 10−4 2.99 1.2× 10−4 3.00 1.5× 10−5

L2,bound 1.1× 10−3 2.99 1.4× 10−4 3.00 1.7× 10−5

L∞,bound 1.6× 10−3 2.61 2.7× 10−4 2.30 5.4× 10−5

FIG. 7. A two-dimensional example of the four limiters showing the rotation of a Gaussian pulse through one
complete revolution (a) Basic limiter; (b) sign-preserving limiter; and (c) bounds-preserving limiter.



FIG. 8. A two-dimensional example of the three limiters showing the rotation of the slotted cylinder. (a) Basic
limiter; (b) sign-preserving limiter; and (c) bounds-preserving limiter.
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TABLE VIII

The Accuracy of the Limiters for a Periodic Sine Wave Translated at 45 Degrees

for One Period in Two Dimensions with a CFL Number of 1/20

Norm Error 50× 50 Rate 100× 100 Rate 200× 200

L1,mono 2.6× 10−3 2.16 5.8× 10−4 2.16 1.3× 10−4

L2,mono 4.0× 10−3 2.23 8.5× 10−4 2.16 1.9× 10−4

L∞,mono 2.7× 10−2 1.65 8.6× 10−3 1.56 2.9× 10−3

L1,sign 2.2× 10−3 2.13 4.9× 10−4 2.06 1.2× 10−4

L2,sign 2.5× 10−3 2.18 5.6× 10−4 2.06 1.3× 10−4

L∞,sign 4.7× 10−3 2.31 9.5× 10−4 2.17 2.1× 10−4

L1,bound 2.2× 10−3 2.13 4.9× 10−4 2.06 1.2× 10−4

L2,bound 2.5× 10−3 2.18 5.6× 10−4 2.06 1.3× 10−4

L∞,bound 4.7× 10−3 2.31 9.5× 10−4 2.17 2.1× 10−4

6. SUMMARY

In this paper we have constructed new flux limiter functions for use in conjunction with
high-resolution Godunov solvers. These limiters relax the relatively stringent condition
of preserving monotonicity, while enforcing less-restrictive conditions. Furthermore these
new limiters are readily implemented in the standard framework of monotonicity-preserving
schemes. Moreover, these schemes can be applied via a Godunov type of algorithm and are
applicable to complex systems of equations. We have provided several examples from gas
dynamics to show the robustness of this approach.

Although monotonicity-preserving algorithms are sometimes required to prevent un-
physical oscillations in the solution, there are many simulations where the preservation
of monotonicity is not essential. We have shown that the numerical diffusion associated
with monotonicity-preserving algorithms can significantly degrade a solution, eroding the
amplitude of local maxima and decreasing both the overall accuracy and rate of convergence
of solutions. In such cases, we have also shown that less-restrictive conditions such as sign
preservation, or more generally the preservation of global minimum or maximum values,
produce an improved result in the sense of better accuracy.

However, use of these limiters will be potentially oscillatory near steep or discontinuous
profiles, and so caution must be exercised to determine which features of the flow the user
deems more important. As a final example we show the performance of the standard and
bounds-preserving limiter on a slightly more complex wave form. The double step has an
intermediate step that does not influence the choice for the global bounds. The solutions
are seen in Fig. 9 and aside from small oscillations around the intermediate jump there is
little difference. If such oscillations are not acceptable, the standard limiter should be used.
In terms of error, theL1 norms are quite close, but are lower for the new limiter over the
lower half of the domain,x∈ [0, 0.5], and lower for the standard limiter forx∈ [0.5, 1].
This might be expected given the nature of the problem and the chosen bounds.

The main results of this paper are presented in Section 3; there we showed how to modify
the standard monotonicity-preserving limiter function in one spatial dimension through the
simple process of redefining two of the parameters on which the limiter depends—the values
of the local maximum and minimum values ¯ρmax andρ̄min. The less we restrict these values,
the less diffusive is the resulting scheme. Also in this section we explicitly demonstrated the
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FIG. 9. The performance of the basic monotone and bounds-preserving limiter on a double step waveform.
For the bounds-preserving limiter the global bounds are ¯ρmin = 0 and ¯ρmax = 1. Both use 80 cells and a CFL
number of 0.3, with periodic boundary conditions for a single transit of the grid. Results shown att = 1.0. (Left)
Standard limiter and (Right) bounds-preserving limiter.

performance of each of our modified limiters. In Section 4 we described the generalization
of our constructions to two spatial dimensions, and computationally verified their behavior.

In summary, we have found that the limiter based on choosing global values for ¯ρmax and
ρ̄min is particularly effective in problems for which meaningful choices of these values can
be made. One important example is the advection of species fractions, where on physical
grounds, one can choose ¯ρmax= 1 and ¯ρmin = 0. More generally, the ability to enforce
physical constraints other than monotonicity through simple modifications of an algorithm
should be explored further.
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